Unified Algorithms for Online Learning and Competitive Analysis
نویسندگان
چکیده
Online learning and competitive analysis are two widely studied frameworks for online decisionmaking settings. Despite the frequent similarity of the problems they study, there are significant differences in their assumptions, goals and techniques, hindering a unified analysis and richer interplay between the two. In this paper, we provide several contributions in this direction. We provide a single unified algorithm which by parameter tuning, interpolates between optimal regret for learning from experts (in online learning) and optimal competitive ratio for the metrical task systems problem (MTS) (in competitive analysis), improving on the results of Blum and Burch (1997). The algorithm also allows us to obtain new regret bounds against “drifting” experts, which might be of independent interest. Moreover, our approach allows us to go beyond experts/MTS, obtaining similar unifying results for structured action sets and “combinatorial experts”, whenever the setting has a certain matroid structure.
منابع مشابه
A Unified Approach to Online Allocation Algorithms via Randomized Dual Fitting
We present a unified framework for designing and analyzing algorithms for online budgeted allocation problems (including online matching) and their generalization, the Online Generalized Assignment Problem (OnGAP). These problems have been intensively studied as models of how to allocate impressions for online advertising. In contrast to previous analyses of online budgeted allocation algorithm...
متن کاملOnline Scheduling of Jobs for D-benevolent instances On Identical Machines
We consider online scheduling of jobs with specic release time on m identical machines. Each job has a weight and a size; the goal is maximizing total weight of completed jobs. At release time of a job it must immediately be scheduled on a machine or it will be rejected. It is also allowed during execution of a job to preempt it; however, it will be lost and only weight of completed jobs contri...
متن کاملOnline Learning and Competitive Analysis: a Unified Approach
1 Abbreviations and Notations 3
متن کاملOnline Network Design Algorithms via Hierarchical Decompositions
We develop a new approach for online network design and obtain improved competitive ratios for several problems. Our approach gives natural deterministic algorithms and simple analyses. At the heart of our work is a novel application of embeddings into hierarchically well-separated trees (HSTs) to the analysis of online network design algorithms — we charge the cost of the algorithm to the cost...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012